
*Corresponding author: Email: y.chen@uwinnipeg.ca;

On the DAG Decomposition

Yangjun Chen

1*
 and Yibin Chen

1

Please check corrsponding author name
1
The University of Winnipeg, Canada.

Article Information

DOI: 10.9734/BJMCS/2015/19380

Editor(s):

(1)
Reviewers:

(1)

(2)
(3)

Complete Peer review History:

Received: 06 June 2015

Accepted: …………….. 2015

Published: ……………. 2015

Abstract

In this paper, we propose an efficient algorithm to decompose a directed acyclic graph G into a

minimized set of node-disjoint chains, which cover all the nodes of G. For any two nodes u and v on a

chain, if u is above v then there is a path from u to v in G. The best algorithm for this problem up to now

needs O(n
3
) time, where n is the number of the nodes of G. Our algorithm, however, needs only O(n2

)

time, where  is G’s width, defined to be the size of a largest node subset U of G such that for every pair

of nodes x, y  U, there does not exist a path from x to y or from y to x. More importantly, by the existing

algorithm, O(n
2
) extra space (besides the space for G itself) is required to maintain the transitive closure

of G to do the task while ours needs only O(n) extra space.

Keywords: reachability queries; directed graphs; transitive closure; graph decomposition.

1 Introduction

Let G be a directed acyclic graph (a DAG for short). A chain cover of G is a set C of node-disjoint chains

such that it covers all the nodes of G, and for any two nodes u and v on a chain p  C, if u is above v then

there is a path from u to v in G. In this paper, we discuss an efficient algorithm to find a minimized C for G.

As an example, consider the DAG shown in Fig. 1(a). We can decompose it into a set of two chains, as

shown in Fig. 1(b), which covers all the nodes of G. Fig. 1(c) shows another possible minimized decompo-

sition.

With the advent of the web technology, the efficient decomposition of a DAG G into a minimum set of

chains becomes very important; especially, for the applications involving massive graphs such as social

Original Research Article

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

networks, for which we may quite often ask whether a node v is reachable from another node u through a

path in G.

Fig. 1. Illustration for DAG decomposition

A naive method to answer such a query is to precompute the reachability between every pair of nodes in G

(V, E) - in other words, to compute the transitive closure of G, which is also a directed graph G*(V, E*) with

(v, u)  E* if and only if there is a path from v to u in G. (See Fig. 2(a) for illustration, in which we show the

transitive closure of the graph shown in Fig. 1(a).).

Fig. 2. Illustration for transitive closure and index sequences

As it is well known, the transitive closure of G can be stored as a boolean matrix M such that M [i, j] = 1 if

there is path from i to j [21]; otherwise, M [i, j] = 0 [26]. Then, a reachability query can be answered in a

constant time. However, this requires O(n
2
) space for storage, which makes it impractical for very large

graphs, where n = |V|. Another method is to compute the shortest path from u to v over such a large graph on

demand. Therefore, it needs only O(m) space, but with high query processing cost - O(m) time in the worst

case, where m = |E|. However, if we are able to decompose a DAG into a minimum set of chains, we can

effectively compress a transitive closure without increasing much query time, as described below.

Let G be a directed graph. If it is cyclic (i.e., it contains cycles), we can first find all the strongly connected

components (SCC) in linear time [25] and then collapse each of them into a representative node. Clearly, all

of the nodes in an SCC are equivalent to its representative as far as reachability is concerned since each pair

of nodes in an SCC are reachable from each other. In this way, we transform G to a DAG. Next, we

decompose the DAG into a minimum set C of node-disjoint chains. (Recall that if a node u appears above

another node v on a chain, there is a path from u to v.) Denote |C| = . We will then

(1) Number each chain and number each node on a chain; and

(2) Use a pair (i, j) as an index for the jth node on the ith chain.

Besides, each node u on a chain will be associated with an index sequence of the form: (r, jr) … (i, ji) … (k,

jk) (1  r  i  k  ) such that any node v with index (x, y) is a descendant of u if and only if there exists (x,

jx) in the sequence with y  jx. (See Fig. 2(b) for illustration.) Such index sequences can be created as follows.

First of all, we notice that we can associate each leaf node with an index sequence, which contains only one

index, i.e., the index assigned to it. Clearly, such an index sequence is trivially sorted and its length is 1  .

Let v be a non-leaf node with children v1, ..., vl each associated with an index sequence Li (1  i  l). Assume

that |Li|   (1  i  l) and the indexes in each Li are sorted according to the first element in each index. We

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

will create an index sequence L for v, which initially contains only the index assigned to it. Then, we will

merge all Li’s into L one by one. To merge an Li into L, we will scan both L and Li from left to right. Let (a1,

b1) (from L) and (a2, b2) (from Li) be the index pairs currently encountered. We will perform the following

checking’s:

 If a2 > a1, we go to the index next to (a1, b1) (in L) and compare it with (a2, b2) in a next step.

 If a1 > a2, insert (a2, b2) just before (a1, b1) (in L). Go to the index next to (a2, b2) (in Li) and compare

it with (a1, b1) in a next step.

 If a1 = a2, we will compare b1 and b2. If b1 < b2, nothing will be done. If b2 < b1, replace b1 (in (a1, b1))

with b2. In both cases, we will go to the indexes next to (a1, b1) (in L) and (a2, b2) (in Li), respectively.

 We will repeat the above three steps until either L or Li is exhausted. If when L is exhausted Li still

has some remaining elements, append them at the end of L.

Obviously, after all Li’s have been merged into L, the length of L is still bounded by the number . Denote

by dv the outdegree of v. The time spent on this process is then bounded by O() = O(m), but the

space overhead is only O(n). The query time remains O(1) if we store the index sequences as a matrix MG,

as shown in Fig. 2(c), in which each entry MG(v, j) is the jth element in the index sequence associated with

node v. So, a node u with index (i, j) is a descendant of node v if and only if MG(v, i)  j. In practice,  is in

general much smaller than n. In this sense, G* is effectively compressed based on a minimized

decomposition of G.

The problem to decompose a DAG is also heavily related to another theoretical problem [7], [8], [11], [16],

[19], [20]: the decomposition of partially ordered sets (or posets for short) S = (S, ≻) into a minimum set of

chains, where S is a set of elements and ≻ is a reflexive, transitive, and antisymmetric relation over the

elements. We can represent any poset S as a DAG G, where each node stands for an element in S and each

arc u  v for a relation. Obviously, all the transitive relations in S can be represented by the transitive

closure G* of G. According to Dilworth [8], the size of a minimum decomposition equals the size of a

maximum antichain U, which is a subset of elements such that for each two elements a, c  U, a ⊁ c and c ⊁

a. Furthermore, by using the Fulkerson’s method [12], a minimum set of chains can be found in O(n
3
) time

as follows:

i) Construct the transitive closure G* of G representing S = (S, ≻).

ii) Let S = {a1, a2, ..., an}. Construct a bipartite graph GS with bipartite (V1, V2), where V1 = {x1,

x2, ..., xn},V2 = {y1, y2, ..., yn} and an edge joins xi  V1 to yj  V2 whenever ai  aj  G*.

iii) Find a maximal matching M of GS. Then, for any two edges e1, e2  M, if e1 = (xi, yk) and e2 =

(xk, yj), connect e1 to e2 (by identifying yk with xk.)

According to Fulkerson [12], the number of chains constructed as described above is n - |M|. It must be min-

imum since in terms of König’s theorem ([2], page 180), the size of a maximum antichain U of S is also n -

|M| and we are not able to place any two elements in U on a same chain. Thus, we have  = |U|, referred to as

the width of G (or S).

See Fig. 3 for illustration.

 
v

vd 

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Fig. 3. Illustration for poset decomposition

The dominant cost of the above process is obviously the time and space for constructing G*. They are

bounded by O(n
3
) and O(n

2
), respectively [26]. However, using the algorithm proposed by Hopcroft and

Karp [13], M can be found in O (e) time, where e is the number of the arcs in G*, bounded by O(n
2
).

In [14], Jagadish discussed an algorithm for finding a minimum set of node-disjoint paths that cover a di-

rected acyclic graph G by transforming the problem to a min network flow [9], [15], [18], [22]. Its time

complexity is bounded by O(nm). However, a chain is in general not a path. For any pair of nodes u and v

on a chain, we only require that if u appears above v, there is a path from u to v [23]. So, the number of paths

found by the method discussed in [14] is generally much larger than the minimal number of node-disjoint

chains. However, if we apply the Jagadish’s method to G*, we can get a minimized set of chains of G. But

again, O(n
3
) time and O(n

2
) space are required to construct G*.

The method discussed in [3] is also to decompose a DAG into node-disjoint chains. It runs in O(n
2.5

) time.

However, the decomposition found is not minimum. Our earlier algorithm [4] works for the same purpose.

Its time complexity is bounded by O(k
1.5

n), where k is the number of the chains, into which the DAG is

decomposed. But in some cases it fails to find a minimum set of chains since when generating chains, only

part of reachability information is considered. This problem is removed by [5] and [6] both with the same

time complexity O(n2
). However, in the method discussed in [5] each node is associated with a large data

structure and requires O(n2
) space in the worst case. By [6], the generated chains may contain some newly

created nodes, but how to remove such nodes are not discussed at all.

Different from the above strategies, the algorithm discussed in [10] is to find a maximum k-chain in a planar

point set M  N  N, where N = {0, 1, ..., n - 1} and is defined by establishing (i, j) ≺ (i′, j′) if and only if i′ >

i and j′ > j. So M is a special kind of posets. A k-chain is a subset of M that can be covered by k chains. The

time complexity of this algorithm is bounded by O((n
2
/k)/logn). The algorithms discussed in [17] and [24]

are to find a maximum 2-chain and 1-chain in M, respectively. [17] needs (nlogn) time while [24] needs

only O(pn) time, where p is the length of the longest chain.

In this paper, we propose an efficient algorithm to find a minimum set of chains for G. It runs in O(n2
)

time and in O(n) space while the best algorithm for this problem needs O(n
3
) time and in O(n

2
) space.

The remainder of the paper is organized as follows. In Section 2, we discuss an algorithm to stratify a DAG

into different levels and review some concepts related to bipartite graphs, on which our method is based.

Section 3 is devoted to the description of our algorithm to decompose a DAG into chains, as well as the

analysis of its computational complexities. In Section 4, we prove the correctness of the algorithm. Finally, a

short conclusion is set forth in Section 5.

2 Graph Stratification and Bipartite Graphs

Our method is based on a DAG stratification strategy and an algorithm for finding a maximal matching in a

bipartite graph. Therefore, the relevant concepts and techniques should be first reviewed and discussed.

2.1 Stratification of DAGs

We first discuss the DAG stratification.

Definition 1 Let G(V, E) be a DAG. We decompose V into subsets V0, V1, ..., Vh such that V = V0  V1  ...

 Vh and each node in Vi has its children appearing only in Vi-1, ..., V0 (i = 1, ..., h), where h is the height of G,

i.e., the length of the longest path in G. 

n

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

For each node v in Vi, we say, its level is i, denoted level(v) = i. We also use Cj(v) (j < i) to represent a set of

links which start from v to all those v’s children, which appear in Vj. Therefore, for each v in Vi, there exist

i1, ..., ik (il < i, l = 1, ..., k) such that the set of its children equals  vCi1
 ...   vC

ki
. Let Vi = {v1, v2, ..., vl}.

We use 𝑪𝑗
𝑖 (j < i) to represent Cj(v1)  ...  Cj(vl).

Such a DAG decomposition can be done in O(m) time by using the following algorithm, in which we use

G1\G2 to stand for a graph obtained by deleting the arcs of G2 from G1; and G1  G2 for a graph obtained by

adding the arcs of G1 and G2 together. In addition, d
-
(v) and d

+
(v) represent v’s indegree and v’s outdegree,

respectively.

Algorithm graph-stratification(G)

Begin

1. V0 := all the nodes with no outgoing arcs; i := 0;

2. W := all the nodes that have at least one child in V0;

3. while W   do

4. {for each node v in W do

5. {let v1, ..., vk be v’s children appearing in Vi;

6. Ci(v) := {v1, ..., vk}; (*Here, for simplicity, we use vj to represent a link from v to vj.*)

7. if d
+
(v) > k then remove v from W;

8. G := G\{v  v1, ..., v  vk};

9. d
+
(v) := d

+
(v) - k;

10. }

11. Vi+1 := W; i := i + 1;

12. W := all the nodes that have at least one child in Vi;

13. }

end

In the above algorithm, we first determine V0, which contains all those nodes having no outgoing arcs (see

line 1). In the subsequent computation, we determine V1, ..., Vh. In this process, G is reduced step by step

(see line 8), so is d
+
(v) for any v  G (see line 9). In order to determine Vi (i > 0), we will first find all those

nodes that have at least one child in Vi-1, which are stored in a temporary variable W. For each node v in W

(see line 3), we will then check whether it also has some other children not appearing in Vi-1, which is done

by checking whether d
+
(v) > k in line 7, where k is the number of v’children in Vi-1. If it is the case, it will be

removed from W since it cannot belong to Vi. Concerning the correctness of the algorithm, we have the

following proposition.

Proposition 1 Let G0 = G. Denote by Gj the reduced graph after the jth iteration of the out-most for-loop.

Denote by (v) the outdegree of v in Gj. Then, any node v in Gj does not have children appearing in V0  ... 

Vj-1, where V0 contains all those nodes having no outgoing arcs, and for any v  Vi (i = 1, ..., j - 1) (v) = 0

while (v)  0, ..., (v)  0.

Proof. We prove the proposition by induction on j.

Basic step. When j = 1, the proposition trivially holds.

Induction hypothesis. Assume that when j = l, the proposition holds. Then, we have

(1) Gl = G\(  
1

0



 








l

i Gv
i vC), and

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

(2)

ld (v) = d

+
(v) -  





1

0

l

i
i vC .

Now we consider the case of j = l + 1. From lines 8 and 9, as well as the induction hypothesis, we immedi-

ately get

(3) Gl+1 = G\(  
l

i Gv
i vC

0 









), and

(4)

1ld (v) = d

+
(v) -  



l

i
i vC

0

.

From (3) and (4), and also from lines 7 and 11, we can see that for any node v  Vl+1 we have

1ld (v) = 0

while

0d (v)  0, ...,


ld (v)  0. 

From the proof of Proposition 1, we can see that

 to check whether a node v in Gj belongs to Vj+1, we need only to check whether

ld (v) is strictly larger

than |Cj(v)| (see line 7), which requires a constant time; and

 G is correctly stratified.

Since each arc is accessed only once in the process, the time complexity of the algorithm in bounded by

O(m).

As an example, consider the graph shown in Fig. 4(a). Applying the above algorithm to this graph, we will

generate a stratification of the nodes as shown in Fig. 4(b).

Fig. 4. Illustration for DAG stratification

In Fig. 4(b), the nodes of the DAG shown in Fig. 4(a) are divided into three levels: V0 = {c, f, i, j, a, k}, V1 =

{b, e, h}, and V2 = {d, g, l}. Associated with each node at each level is a set of links pointing to its children

at different levels. For example, node b in V1 is associated with three links respectively to nodes c, f, and i in

V0, denoted as C0(b) = {c, f, i}. (For simplicity, we use C0(b) = {c, f, i} to represent three links from b to c, f,

and i, respectively.)

2.2 Concepts of Bipartite Graphs

Now we restate two concepts from the graph theory which will be used in the subsequent discussion.

Definition 2 (bipartite graph [2]) An undirected graph B(V, E) is bipartite if the node set V can be

partitioned into two sets T and S in such a way that no two nodes from the same set are adjacent. We also

denote such a graph as B(T, S; E). 

For any node v  B, neighbor(v) represents a set containing all the nodes connected to v.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Definition 3 (matching [2]) Let B(V, E) be a bipartite graph. A subset of edges E  E is called a matching if

no two edges in E have a common end node. A matching with the largest possible number of edges is called

a maximal matching, denoted as MB (or simply M if B is clear from context.) 

Let M be a matching of a bipartite graph B(T, S; E). A node v is said to be covered by M, if some edge of M

is incident to v. We will also call an uncovered node free. A path or cycle is alternating, relative to M, if its

edges are alternately in E\M and M. A path is an augmenting path if it is an alternating path with free origin

and terminus. Let v1  v2  ...  vk be an alternating path with (vi, vi+1)  E\M and (vi+1, vi+2)  M (i = 1, 3, ...).

By transferring the edges on the path, we change it to another alternating path with (vi, vi+1)  M and (vi+1,

vi+2)  E\M (i = 1, 3, ...). In addition, we will use M(T) and M(S) to represent all the free nodes in T and S,

respectively; and use M(T) for all the covered nodes in T and M(S) for all the covered nodes in S. Finally, if

(u, v)  M, we say, u covers v with respect to M, and vice versa, denoted as M(u) = v, and M(v) = u,

respectively.

Much research on finding a maximal matching in a bipartite graph has been done. The best algorithm for this

task is due to Hopcroft and Karp [13] and runs in O(m n) time, where n = |V| and m = |E|. The algorithm

proposed by Alt, Blum, Melhorn and Paul [1] needs O(n
1.5  nm log/) time. In the case of large m, the latter

is better than the former.

3 Algorithm Descriptions

In this section, we describe our algorithm for the DAG decomposition. The main idea behind it is to con-

struct a series of bipartite graphs for G(V, E) based on the graph stratification and then find a maximum

matching for each of such bipartite graphs using the Hopcroft-Karp algorithm [13]. All these matchings

make up a set of node-disjoint chains, which, however, may not be minimal. In the following, we first dis-

cuss an example to illustrate this idea in 3.1. Then, in 3.2, we define the so-called virtual nodes, and show

how they can be used to efficiently and effectively reduce the number of node-disjoint chains. Next, in 3.3,

we discuss how the virtual nodes can be resolved (removed) from created chains to get the final result.

3.1 An Example

Example 1 Consider the graph and the corresponding stratification shown in Fig. 4. A bipartite graph made

up of V0 and V1: B(V1, V0; E1) with E1 = 𝑪0
1 is shown in Fig. 5(a) and a possible maximal matching M1 of it

is shown in Fig. 5(b).

Another bipartite graph made up of V1 and V2: B(V2, V1; E2) with E2 = is shown in Fig. 5(c) and a possible

maximal matching M2 of it is shown in Fig. 5(d).

Fig. 5. Maximum matchings for bipartite graphs

Combining M1 andM2 by connecting their edges, we will get a set of seven chains, denoted by M1 M2

and shown in Fig. 6(a). (Note that four of these chains each contain only a single node.)



Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

However, if we transfer the edges on an alternating path relative to M1: f e  c  b  i (see Fig. 6(b), where

a solid edge represents an edge belonging to M1 while a dashed edge to E1\M1); and connect g to f as illus-

trated in Fig. 6(c), we will get a set of six chains as shown in Fig. 6(d). (Note that g and f are on a chain since

there exists a path g e  f, which connects g and f.) 

Fig. 6. Illustration for transferring edges on alternating paths

The question is how to efficiently find such a possible transformation to reduce the number of chains.

For this purpose, we introduce the concept of virtual nodes to transfer the reachability information and at the

same time to maintain the information on how a transformation can be conducted.

3.2 Chain Generation

From the above example, we can see that by simply combining maximal matchings of bipartite graphs, the

number of formed chains may be larger than the minimized number of chains. To solve this problem, we

need to introduce some virtual nodes into the original graph, which are used to transfer the reachability in-

formation from lower levels to higher levels.

3.2.1 Virtual Nodes

We will work bottom-up. During the process, some virtual nodes may be added to Vi (i = 1, ..., h - 1) level by

level. However, such virtual nodes will be eventually resolved to obtain the final result.

In the following, we first give a formal definition of virtual nodes. Then, we describe how a virtual node is

established. We start our discussion with the following specification:

V0 = V0.

Vi = Vi  {virtual nodes added to Vi} for 1  i  h - 1.

Ci = 𝑪𝑖−1
𝑖  {all the new arcs from the nodes in Vi to the virtual nodes added to Vi-1} for 1  i  h - 1.

B(Vi, Vi-1; Ci) - the bipartite graph containing Vi and Vi-1.

Mi - a maximal matching of B(Vi, Vi-1; Ci).

Definition 4 (virtual nodes) Let G(V, E) be a DAG, divided into V0, ..., Vh (i.e., V = V0  ...  Vh). Let Mi be

a maximal matching of B(Vi, Vi-1; Ci) for i = 1, …, h. For each free node v in Vi-1 with respect to Mi, a

virtual node v’ created for v is a new node added to Vi (1  i  h - 1), denoted as v = s(v). 

The goal of virtual nodes is to establish the connection between the free nodes (with respect to a certain

maximum matching of a bipartite graph) and the nodes that may be several levels apart. Therefore, for each

virtual node v (created for v in Vi-1 and added to Vi), a bunch of virtual arcs incident to it should be created.

Especially, we distinguish among three kinds of virtual arcs: inherited arcs, transitive arcs and alternating

arcs, which are created as follows.

inherited arcs - If there is u  Vj (j > i) such that u  v  E, add u  v, referred to as an inherited arc.

transitive arcs - If there exist u  Vj (j > i) and w  Vi such that u  w  E and w  v  Ci, add u  v if it

has not been created as an inherited arc, referred to as a transitive arc.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

In order to create the alternating arcs, we need first to find a maximum set of node-disjoint alternating paths

such that

1. Each of them starts at a free node and ends at a covered node in Vi-1; and

2. They cover all the nodes in B(Vi, Vi-1; Ci), except several (possibly 0) free nodes in Vi-1 and Vi.

For example, relative to the maximum matching shown in Fig. 5(b) for the bipartite graph shown in Fig. 5(a),

we can find three such paths as shown in Fig. 7.

Fig. 7. A maximum set of alternating paths

Denote the path starting at free node v by Pv. The alternating arcs can be described as below.

alternating arc - If there exists w ( v) on Pv and u  Vj (j > i) such that one of the two conditions holds:

- u  w  E, or

- there is a node w  Vi such that u  w  E and w  w  Ci,

add u  v if it has not been created as an inherited or a transitive arc. It is referred to as an alternating arc.

We create such an arc to indicate a possibility to make v covered by transferring the edges on the

corresponding alternating path from v to w, and then connect u and w (see Fig. 6(b) and (c) for illustration.)

In addition, a virtual arc from v to s(v) is generated to record the relationship between v and s(v).

Example 2 Continued with Example 1. Relative to M1 of B(V1, V0; E1) shown in Fig. 5(b), i, j and k are three

free nodes. Then, three virtual nodes i, j and k (for i, j and k, respectively) will be created and added to V1.

Then, we have V1 = {b, e, h, i, j, k}. In addition, five virtual arcs: d  i, d  j, g  i, g  j, and l  k
will be generated, shown as five dashed arcs in Fig. 8(a).

Among these virtual arcs, l  k is an inherited arc since in the original graph we have l  k (see Fig. 4(a)).

But d  j and g  j are two transitive arcs since j is reachable respectively from d and g through e in V1

(see Fig. 4(a)).

Finally, d  i and g  i are two alternating arcs. We join d and i since there is a node f that is connected to

i through an alternating path: f  e  c  b  i (see Fig. 6(b)) and f is reachable from d through a node e in V1

(see Fig. 4(a).) (We also note that c is another node connected to i through an alternating path: c  b  i, and

d  c  E. However, only one alternating arc is created no matter how many possibilities we have to

generate such an arc.) For the same reason, we join g and i.

In Fig. 8(b), we show a possible maximum matching M2 of B(V2, V1; C2). Combining M2 and M1, we get a

set of six chains as shown in Fig. 8(c).

On these chains, the virtual nodes j and k can be simply removed since they do not have a parent along the

corresponding chains. In order to remove i’, however, we have to transfer the edges on the alternating path: f

 e  c  b  i and then connect g and f, obtaining the final chains shown in Fig. 6(d). We can also transfer

the edges on c  b  i and then connect g and c to get a different set of six chains.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

We will call an arc along a chain a chain arc. From the above example, we can see that how a virtual node is

resolved depends on how it is connected to its parent through a chain arc. Especially, an alternating arc in

fact does not represent a reach ability, but indicates a possibility to connect two nodes by transferring edges

along some alternating path. Thus, we need to label virtual arcs to represent their properties, and at the same

time indicate at what level a virtual node is added. Let v be a virtual node. Depending on whether its source

s(v) is an actual node or a virtual node itself, we label the virtual arcs incident to v in two different ways.

Fig. 8. Illustration for virtual nodes and chains

Assume that s(v) is an actual node in Vi-1. Then, v is a virtual node added to Vi and an virtual arc incident to

v: u  v with u  Vj (j > i) will be labeled as follows:

i) If u  v is inherited or transitive, its label label(u  v) will be set to 0, indicating that s(v) is

reachable from u (through a path).

ii) If u  v is an alternating arc, label(u  v) will be set to i, indicating that to resolve v we need to

transfer edges along an alternating path in B(Vi, Vi-1; Ci).

If s(v) itself is a virtual node, we need to label u  v a little bit differently:

iii) If u  v is inherited, the label for it is set to be the same as label(u  s(v)).

iv) If u  v is transitive, there must exist w1, ... wk (k  1) in Vi such that w1  s(v), ..., wk  s(v)  Ci

and u  w1, ..., u  wk  E. We will label u  v with min {l1, ..., lk}, where lj = label(wj  s(v)) (j

= 1, ..., k).

v) If u  v is an alternating arc, label(u  v) is set to i (in the same way as (ii)).

In addition, for convenience, all the original arcs in G are considered to be labeled with 0.

In the whole process, we will not only create a set of chains which may contain virtual nodes, but also a new

graph by adding virtual nodes and virtual arcs to G, called a companion graph of G, denoted as Gc, which

will be used for resolution of virtual nodes.

Example 3 Consider the graph shown in Fig. 9(a). This graph can be divided into four levels as shown in

Fig. 9(b).

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Fig. 9. A DGA and its stratification

In Fig. 10(a), we show the bipartite graph B(V1, V0; C1) made up of the first two levels. A possible maximal

matching M1 of it is shown in Fig. 10 (b). Relative to M1, a, b and c are three free nodes in V0. So three

virtual nodes a’, b’ and c’ will be created and added to V1 as shown in Fig. 10(c). At the same time, 13 arcs

will be created. Among them, only one arc connects a node in V3 to one of these virtual nodes while all the

remaining 12 arcs connect some nodes in V2 to them, as described below.

Fig. 10. Illustration for generation of paths

- The only new arc connecting a node l in V3 to a virtual node a: l  a is an inherited arc, labeled with 0

according to (i). (There is neither alternating nor transitive arc connecting any node in V3 to any of these

virtual nodes.)

The 12 new arcs connecting the nodes in V2 to some virtual nodes can be divided into two groups.

Group 1 contains 6 transitive arcs, labeled with 0 according to (i):

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

h  a, h  b and h  c.

j  a, j  b and j  c.

Group 2 contains 6 alternating arcs, labeled with 1 according to (ii):

i  a, i  b and i  c.

k  a, k  b and k  c

Thus, V1 = {a, b, c, f, g}. B(V2, V1; C2) is shown in Fig. 10(d). Assume that the maximal matching M2

found for it is as shown in Fig. 10(e). Relative to M2, b’ is a free nodes in V1 and then a virtual nodes b’’

will be created and added to V2 (see Fig. 10(f).) In addition, three transitive arcs: l  b, m  b and n 

b will be created. All of them are labeled with 1.

l  b is added because b is reachable from l through i in V1. Label (l  b) is set to be 1 according to (iv)

since label(i  b) = 1. The same analysis applies to the other two arcs.

B(V3, V2; C3) is shown in Fig. 9(f). Fig. 10(g) shows a possible maximal matching M3 of this bipartite graph.

Combining M1, M2, and M3, we get M1 M2 M3. This plus all the free nodes in V3 make up a set of six

chains as shown in Fig. 10(h), and one of them contains only a single node. This must be a minimum set

since the original graph contains an antichain of 6 nodes: {a, b, c, k, m, n}.

In terms of the above discussion, we give the following algorithm.

Algorithm GenChain(stratification of G)

input: a graph stratification.

output: a set of chains which may contain virtual nodes.

Begin

1. V0’ := V0;

2. for i = 1 to h do

3. { find Mi for G(Vi, Vi-1; Ci)

4. let v1, ..., vk be all the free nodes in Vi-1, relative to Mi;

5. Vi := Vi  {v1, ..., vk}; (*v1, ..., vk are the virtual nodes created for v1, ..., vk, respectively.*)

6. let u1, ..., uj be all the covered virtual nodes in Vi-1;

7. for l = 1 to j do

8. { remove all the virtual arcs incident to ul, except the arc belonging to Mi; }

9. for l = 1 to k do

10. { create all the virtual arcs incident to vl; }

11. }

12. M := M1 ... Mh; return M;

End

In the above algorithm, special attention should be paid to lines 6 - 8, by which all the virtual arcs incident to

a covered virtual node in Vi-1 (i.e., a virtual node in Vi-1, which is covered relative to Mi), except the

corresponding arcs belonging to Mi, will be removed since they will not be used any more in the subsequent

computation for the chain generation. Therefore, at any point in time, the number of virtual arcs maintained

in the process is bounded by O(n).

3.2.2 Computational complexity of chain generation

 

 

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

We now analyze the time complexity of the chain generation.

In general, the cost of this process can be divided into two parts:

- cost1: The time for finding a maximal matching of every B(Vi, Vi-1; Ci) (i = 1, ..., h; V0 = V0); and

- cost2: The time for generating virtual arcs.

We first prove three lemmas to show that for any i {1, …, h - 1} |Vi| 

Let M be a maximal matching of a bipartite graph B(V1, V0; E). Let Yi (i = 0, 1) be a subset of Vi. We denote

by M(Yi) (i = 0, 1) a subset of V(i+1)mod2 such that for each v  M(Yi) there exists a node u in Yi with (u, v)  M.

We further divide M into three (possibly empty) groups: M[1], M[2], and M[3] = M\(M[1]  M[2]) such that

- for each v M[1](V1), there exists at least one alternating path connecting a free node in M(V0) to v;

(remember that M(Vi) stands for all the free nodes in Vi relative to M while M(Vi) for all the covered

nodes in Vi by M. So M[1](Vi) represents all those nodes in Vi covered by M[1].)

- for each v M[2](V0), there exists at least one alternating path connecting a free node in M(V1) to v;

- for each v M[3](V0), there exists no alternating path connecting it to any node in M(V1)  M[2](V1); and

for each u M[3](V1), there exists no alternating path connecting it to any node in M(V0)  M[1](V0).

Concerning this partition of M, we have the following lemma.

Lemma 1 Any node in M[1](V0) does not connect to any node inM(V1)  M[2](V1) through an alternating

path relative to M. Also, any node in M[2](V1) does not connect to any node inM(V0)  M[1](V0) through an

alternating path relative to M.

Proof. Let v be a node in M[1](V0). Assume that there is an alternating path P connecting v to a free node u in

M(V1). Then, the path from a free node w in M(V0) to M(v), the edge (M(v), v), and P together make up an

augmenting path connecting w and u, contradicting the fact that M is a maximal matching. Therefore, any

node in M[1](V0) does not connect to any node inM(V1). In the same way, we can prove the rest part of the

lemma. 

From this lemma, the following lemma can be immediately derived, by which we show how to find an an-

tichain for bipartite graph.

Lemma 2 Let M be a maximal matching of a bipartite graph B(V1, V0; E). Then, M(V0) M  M(V1) make

up a minimized set of chains of B(V1, V0; E); and M(V0) M(V1) M[1](V0) M[2](V1)  M[3](V0) is one

of its antichains.

Proof. It is easy to see that M(V0) M  M(V1) is a minimized set of chains of B(V1, V0; E). It is also easy

to see that any node in M[3](V0) is not reachable from any node in M(V1) M[2](V1). Then, from Lemma 1,

we can see that any node in M[1](V0) is not reachable from M(V1) M[2](V1), and thus any pair of nodes in

A = M(V0) M(V1) M[1](V0) M[2](V1)  M[3](V0) are not reachable from each other. Therefore, A is

an antichain. In addition, we have |M(V0) M  M(V1))| = |A|. So A is a maximum antichain. 

Lemma 3 Let G(V, E) be a DAG, divided into V0, ..., Vh (i.e., V = V0  ...  Vh). Let Mi be a maxima

matching of the bipartite graph B(Vi, Vi-1; Ci). Vi = Vi {virtual nodes added to Vi} for 1  i h - 1. Then,

for any i  {1, …, h - 1}, we have |Vi| 

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Proof. First, we notice that |V1’| = |V1| + | | = |    

| Then, we analyze the size of V2. Obviously, |V2| = |V2| + | | = |A|, where A =

    )(1[3]2
'VM . According to Lemma 2, A is an antichain of

G(V2, V1; C2). Let R =  )(1[3]2
'VM . We will distinguish between two cases:

1. R does not contain virtual nodes. Then, A is a set such that any two nods in it are not connected through

a path. Thus, |A| 

2. R contains at least a virtual node. In this case, we will replace each virtual node v in R with s(v) (a free

node in V0) and each of those nodes u in R with M1(u) (a node in V0 such that (v, u)  M1) which belong

to and connected to a free node of V0 relative to M1 (through an alternating path), resulting in a

new set R with the following properties:

i) Any two nodes in R are not connected through a path according to Lemma 1.

ii) Any node w in R is not connected to a node in D =  . Otherwise, if w is a free

node of V0 relative to M1 in R, then its virtual node must be connected to that node in D. Contradic-

tion. If w is a node in V0 such that w = M1(u) for some u  , there must be a free node of

V0 relative to M1 in R, which is connected to a node in D. Contradiction.

Let R = D  RIt can be seen that R is a set in which any two nodes are connected through a path.

Therefore, |A| = |R| 

Repeating the above argument to allVi with i  3, we can prove the lemma. 

Based on Lemma 3, the time complexity of chain generation can be easily estimated.

First, using the Hopcroft and Karp algorithm [13], the time for finding a maximal matching of B(Vi, Vi-1; Ci)

is bounded by

O(|Ci|).

Therefore, cost1 is bounded by

O()

 O() = O()

For estimating cost2, we need to compute the costs for creating all the inherited, transitive and alternating

arcs. First, for a virtual node, the cost for generating inherited arcs is a constant since we can simply promote

the corresponding free node from its level to the level above it and handle it as virtual. (For example, to cre-

ate a virtual node for a node v at level i, we can add v to level i + 1. Then create a node containing only a link

to v and leave it at level i, used as a representative of v.)

Secondly, the cost for creating the transitive arcs for all the virtual nodes added to Vi is obviously bounded

by O(|Vi-1||Vi|n). It is because at most |Vi-1| virtual nodes can be added to Vi and the number of all the

transitive arcs incident to each of these virtual nodes is bounded by O(|Vi|n).

So the total cost for creating the transitive arcs is bounded by

 01
VM  12

VM  11
VM   011

VM   121
VM

  031
VM  '12

VM

 '12
VM  22

VM   '112
VM   222

VM

 '12
VM   '112

VM

  111
VM

 22
VM   222

VM

  111
VM

|'||| 1 ii VV

 


 
k

i
iii CVV

1
1 |||'|||




h

i
iVkk

1

|| n

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

  = O(n2
).

Finally, we notice that for generating the alternating arcs incident to the virtual nodes added to Vi, we need to

search B(Vi, Vi-1; Ci) once for each of them, and the number of the arcs in B(Vi, Vi-1; Ci) is bounded by O(|Vi-

1||Vi|) O(|Vi|). In addition, for each free node v (in Vi-1), the number of all those nodes z (in Vi-1) which

are connected to v through an alternating path is bounded by |Vi| since each of such nodes must be covered

relative to Mi. For each z, we need to search at most |Vi| arcs to find all those w in Vi such that w  z Ci.

Moreover, for each w, we have to further find all those nodes u such that u  w  E. So the cost for

generating all the alternating arcs incident to v is bounded by O(|Vi-1||Vi| + |Vi|
2
 + |Vi|n). Therefore, the total

cost for creating all the alternating arcs is bounded by

= O(2
n + n2

).

In terms of the above analysis, we have the following proposition.

Proposition 2 The time for creating a minimized set of disjoint chains, which may contain virtual nodes, is

bounded by O(2
n + n2

).

The analysis of the space requirement of this process is quite simple. As mentioned in 3.2.1, at any time

point, we maintain at most O(n) virtual arcs. Besides this, all the bipartite graphs: B(V1, V0; C1), B(V2, V1;

C2), ..., B(Vh, Vh-1; Ch) have to be maintained.

Thus, the space overhead is bounded by

O(n +) = O(n).

3.3 Virtual Node Resolution

After the chain generation, the next step is to resolve virtual nodes on chains. In the following, we will first

discuss the working process to remove virtual nodes in 3.3.1. Then, in 3.3.2, we analyze its computational

complexities.

3.3.1 Removing virtual nodes

To remove virtual nodes from chains, we will work with the companion graph Gc. Two steps will be carried

out:

1. Connect some nodes according to the connectivity represented by the virtual nodes and then remove

them.

2. Establish new connections between free nodes by transferring edges along alternating within a bipartite

graph or cross more than one bipartite graph.

In the first step, we will check Gc top-down and remove virtual nodes level by level. Let v be a virtual node

in Vi. Let u1, …, uk be its parents in Gc. Wi will distinguish between two cases:

i) s(v) is an actual node. If label(uj  v) = 0 (j = 1, …, k), connect uj to s(v). Otherwise, label(uj  v)

must be equal to i, and we will connect uj to each node w which is connected to s(v) through an

alternating path in B(Vi, Vi-1; Ci) and w is reachable from uj.

ii) s(v) itself is a virtual node. If label(uj  v) > i, connect uj to s(v) and label(uj  s(v)) is set to be the

same as label(uj  v). Otherwise, label(uj  v) = i. In this case, we will connect uj to some nodes in

in the same way as (i).




 
h

i
ii nVV

1
1 |||'| 




k

i
iVn

1



nVVVV i

h

i
iii 


 |||||||'|

1

2
1




 
h

i
ii VV

1
1 |||'|

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

See Fig. 11 for illustration

Fig. 11. Illustration for virtual node resolution

Fig. 12. Illustration for transferring edges along alternating paths

Let v be a virtual node and u be its parent along a chain. We call u  v is a chain arc. To remove all the

virtual nodes, we will go through three steps.

In the first step, all those virtual nodes that do not have a parent along a chain we will be simply eliminated.

In the second step, we will check all those chain arcs with label(u  v) < level(v). For such an arc, we will

directly connect u to s(v) and then remove v. label(u  s(v)) is set to be the same as label(u  v). If label(u

 s(v)) < level(s(v)), we will connect u to s
2
(v) = s(s(v)) and remove s(v). We repeat this operation until we

meet s
i
(v) for some i such that label(u  s

i
(v)) = level(s

i
(v)).

After these two steps, we have only those virtual nodes v with label(u  v) = level(v) left on the chains,

where u is the parent of v along the corresponding chain. Then, in the third step, we will remove all such

virtual nodes by using alternating paths.

For this purpose, we first construct a combined graph, denoted as G, over all the bipartite graphs of G,

based on Gc. We notice that in Gc all the generated virtual arcs are maintained.

1. A node in Vi (i = 1, … h – 1) will appear two times: one is in (Vi+1, Vi; Ci+1), and one is in (Vi, Vi-1;

Ci), but they are considered to be different nodes.

B


B


Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

2. For each ending node of a chain v  Vi in (Vi, Vi-1; Ci) (i = 2, …, h), we will search G starting from

each node u  Vi which is connected to v through an alternating path in (Vi, Vi-1; Ci), and connect u to

each reachable node (in this way, part of the transitive closure is established.)

3. Remove all the remaining virtual nodes level by level. Let v be a virtual node in Vi (in (Vi+1, Vi; Ci+1)),

connect each of its parent u to some nodes w in Vi-1 (in (Vi, Vi-1; Ci)) as below.

i) If label(u  v) = i, w should be a node connected to s(v) through an alternating path. W is actual

node, and label(u  w) is implicitly set to be 0.

ii) If label(u  v) < i, w = s(v) and label(u  w) is set to be the same as label(u  v).

In Fig. 12, we show the construction of a combined graph over the bipartite graphs shown in Fig. 11.

Next, we need to define an important concept, the so-called alternating graphs.

Definition 5 (alternating graph) Let B(T, S; E) be a bipartite graph. Let M be a matching of B(T, S; E). The

alternating graph with respect to M is a directed graph with the following sets of nodes and arcs:

 = V() = T  S, and

 = E() = {u  v | u  S, v  T, and (u, v)  M} 

 {v  u | u  S, v  T, and (u, v)  E\M}. 

By this definition, an alternating graph of a bipartite graph is almost the same as the original bipartite graph,

but only with the covered and uncovered edges being set with reverse directions.

Now what we need to do is to find a maximum set of node-disjoint paths in the alternating version of the

combined graph, each starting from an end node of a chain or a node which is a parent of some virtual node

along a chain, and ending at a starting node of a chain.

This must be a minimum set since the original graph contains an antichain of size 6: {a, b, c, k, m, n}. 

It remains to show how to find a maximal set of node-disjoint paths in G. For this purpose, we define a

maximum flow problem over G (with multiple sources and sinks) as follows:

 Each free node v  Vi in (Vi, Vi-1; iE


) (with respect to Mi, i = 2, …, h) is designated as a source.

Each free node u  Vj-1 in (Vj, Vj-1; jE


) (with respect to Mj, j = 1, …, h -1) is designated as a sink.

 Each arc u  v is associated with a capacity c(u, v) = 1. (If nodes u, v are not connected, c(u, v) is

considered to be 0.)

It is a typical 0-1 network. Finding a maximum flow corresponds to finding a maximum set of node-disjoint

paths.

See Fig. 13(a), (b) and (c) for illustration. In Fig. 13(d), we show the final result obtained by transferring

edges on the alternating paths.

B


B


B


B


B


V


B


E


B


B


B


Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Fig. 14. A set of node-disjoint paths and the final result

3.3.2 Computational complexities of virtual node resolution

In this subsection, we analyze the time complexity of the virtual node resolution. The dominant cost of this

process consists of two parts:

- cost3: the time for constructing combined graphs G; and

- cost4: the time for finding a maximum set of bode-disjoint paths in .

Let u1, …, uk (k < ) be all the end nodes of chains appearing in V2 or higher. We will estimate the number ni

of the nodes connected to each ui (i = 1, …, k) through an alternating path within the corresponding bipartite

graph.

To this end, we consider the transitive closure G*(V, E*) of G. We make a bipartite graph BG as follows.

1. For each v  V, we produce two nodes xv and yv.

2. For any two nodes u, v  V, we will connect xu and yv if u  v  E*.

Let M be a maximum matching of BG. We have |M|  n. Notice that the chains generated by Algorithm

GenChain(stratification of G) corresponds a matching M of BG. Since on the chains almost each node is

connected to another node and only some nodes are connected to virtual nodes, it is reasonable to assume

that |M’| = |M|, where  is a constant with 0 <   1. The following proposition can be found in [2].

Proposition 3 M  M contains at least |M| - |M| node-disjoint augmenting paths relative to M’, where M 

M’ = (M  M’)\(M  M’), referred to as the symmetric difference of M and M’. 

From this proposition, the following lemma can be easily derived.

Lemma 4 The average length of an augmenting path relative to M is 2 + 1. 

We have Lemma 4 since on average each augmenting path contains edges from M’, and

so 2 + 1 edges altogether.

Since |M| = |M|, we have

 ni = 2 + 1 = 2 + 1.

G


 |)'||/(||'| MMM 

 |)'||/(||'| MMM 

 |)'||/(||'| MMM 

 |)'||/(||'| MMM   )1/( 

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

In addition, each vi (i = 1, … k) can be at most on one of such node-disjoint augmenting paths, and k is

bounded by Therefore, the average value of cost3 is bounded by

 O() = O(m).

To estimate cost4, we need first to establish a lemma.

Lemma 5 For each arc e in G corresponding to an edge in some maximum matching found for a bipartite

graph, if is followed by another arc e, then e must be an arc which corresponds to an edge not belonging to

any maximum matching. Similarly, any arc corresponding to an edge not covered by any maximum

matching must be followed by an arc corresponding to a covered edge if any.

Proof. Obviously, for any arc corresponding to an edge within a bipartite graph, the lemma holds. For any

arc which crosses bipartite graphs, it always goes from some Vi in (Vi, Vi-1 ;) (i = 2, …, h) to a node in

some Vj in (Vj+1, Vj;) with j < i – 1. So it cannot be an arc corresponding to a covered edge, but must

be followed by an arc corresponding to a covered edge. 

From this lemma, the following corollary can be immediately derived.

Corollary 1 For each node v in G, either there is only one arc emanating from it or only one arc entering it.



According to Corollary 1, we know that by using Dinic’s algorithm [9] the time required to find a maximum

flow and then a maximum set of node-disjoint paths is bounded by O(|V(G)|
0.5
|E(G)|) (see pp. 119 – 121 in

[2] for a detailed analysis.) For self-explanation, we also give a modified version of Dinic’s algorithm

adapted to our problem in Appendix.

Proposition 4 The time complexity of the whole process to resolve virtual nodes is bounded by O(n2
 +

m).

4 Correctness

In this subsection, we prove the correctness of our algorithm.

First, for any graph which can be divided into two levels the algorithm obviously produce a correct answer.

For any graph which can divided into three levels, the result created by the algorithm is also correct, as

stated in the following lemma.

Lemma 6 For any three-level graph G(V, E), the number of chains generated by the algorithm is minimum.

Proof. Let V = V0  V1  V2. If no virtual node is created, the lemma obviously holds. So we assume that

some virtual nodes for the free nodes in V0 relative to M1. In this case, all the virtual nodes v will be removed

by constructing G, in which each node on an alternating path starting from a free node in V2 relative to M2

will be connected to all reachable nodes in V0. Also, v’s parent (in V2) will be connected to all the reachable

nodes in V0. By transferring edges on each path of a maximum set of node-disjoint paths each starting from a

parent of a virtual node or a free node in V2, and terminating at a free node in V1 or V0, we will get the result.

It must be a minimum set of chains since the number of the free nodes which become covered is maximized.



Proposition 5 The number of the chains generated for a DGA by our algorithm is minimum.

||
1

En
k

i
i 



B


iE


B


1jE


Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Proof. We prove the proposition by induction on h.

Initial step. When h = 1, 2, the proposition holds according to Lemma 6.

Induction step. Assume that for any DAG of height k, the proposition holds. Now we consider the case when

h = k + 1. First, we construct a new graph G from G(V, E) as follows:

1. Stratify G, dividing V into V0, ..., Vh (i.e., V = V0  ...  Vh).

2. Find a maximum matching M1 of G(V1, V0; C1). Construct virtual nodes for all the free nodes in V0, and

add them into V1. Add all the virtual arcs as described in 3.2. Then, remove V0.

So G is of height k. According to the induction hypothesis, a minimal set Q of disjoint chains can be found.

Let u1, …, uk (k < ) be all the end nodes of chains appearing in V2 or higher. We connect each node on an

alternating path starting from a ui (1 ≤ i ≤ k) to a reachable node in V0; and then connect the parents of the

virtual nodes to all the respective reachable nodes in V0. Removing the virtual nodes. In a next step, we will

find a maximum set of node-disjoint paths each starting from a ui or a parent of some virtual node along a

chain, and ending at a free node in V0. Assume that there are still l free nodes not on any of such node-

disjoint paths. Thus, Q and these l free nodes make up a set of chain. It must be minimum since Q is

minimum and l is also minimum. It should be the same as the result by applying the algorithm to G up to the

edge transferring, as illustrated in Fig. 14. 

Fig. 14. A set of node-disjoint paths; each of them is an alternating path

5 Conclusion

In this paper, a new algorithm for finding a minimal decomposition of DAGs is proposed. The algorithm

needs O(n2
) time and O(n + m) space, where n and m are the number of the nodes and the arcs in a DAG

G, respectively; and is the width of G. The main idea of the algorithm is the concept of virtual nodes and

the DAG stratification that generates a series of bipartite graphs which may contain virtual nodes. By exe-

cuting Hopcropt-Karp’s algorithm, we find a maximum matching for each of such bipartite graphs, which

make up a set of node-disjoint chains. A next step is needed to resolve all the virtual nodes appearing on the

chains to get the final result.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

We also point out that our algorithm can be easily modified to a 0-1 network flow algorithm by defining a

chain to be a path and accordingly changing the conditions for creating transitive and alternating arcs.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing a maximum cardinality matching in a

bipartite graph in time O(), Information Processing Letters, 37(1991), 237 -240.

[2] A.S. Asratian, T. Denley, and R. Haggkvist, Bipartite Graphs and their Applications, Cambridge Uni-

versity, 1998.

[3] C. Chekuri and M. Bender, An Efficient Approximation Algorithm for Minimizing Makespan on Uni-

formly Related Machines, Journal of Algorithms 41, 212-224(2001).

[4] Y. Chen and Y.B. Chen, An Efficient Algorithm for Answering Graph Reachability Queries, in Proc.

24th Int. Conf. on Data Engineering (ICDE 2008), IEEE, April 2008, pp. 892-901.

[5] Y. Chen and Y.B. Chen, On the Decomposition of Posets, in Proc. 2nd Int. Conf. on Computer

Science and Service System (CSSS 2012), IEEE, Aug. 11-13, Nanjing, China, pp. 1115 - 1119.

[6] Y. Chen and Y.B. Chen, On the Graph Decomposition, Int. Conf. on Big Data and Cloud Computing,

IEEE, Dec. 3 - 5, 2014, Sydney, Australia, pp. 777-784.

[7] G.B. Dantzig and A. Hoffman, On a theorem od Dilworth, Linear Inequalities and related systems

(H.W. Kuhn and A.W. Tucker, eds.) Annals of Math. Studies 38(1966), 207-214.

[8] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950), pp. 161-166.

[9] E.A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power

estimation, Soviet Mathematics Doklady, 11(5):1277-1280, 1970.

[10] S. Felsner, L. Wernisch, Maximum k-chains in planar point sets: combinatorial structure and algo-

rithms, SIAM J. Comp. 28, 1998, pp. 192-209.

[11] T. Gallai and A.N. Milgram, Verallgemeinerung eines Graphentheoretischen Satzes von Reedei. Acta

Sci. Math. Hung., 21(1960), 429-440.

[12] D.R. Fulkerson, Note on Dilworth’s embedding theorem for partially ordered sets, Proc. Amer. Math.

Soc. 7(1956), 701-702.

[13] J.E. Hopcroft, and R.M. Karp, An n
2.5

 algorithm for maximum matching in bipartite graphs, SIAM J.

Comput. 2(1973), 225-231.

[14] H.V. Jagadish, "A Compression Technique to Materialize Transitive Closure," ACM Trans. Database

Systems, Vol. 15, No. 4, 1990, pp. 558 - 598.

[15] A.V. Karzanov, Determining the Maximal Flow in a Network by the Method of Preflow, Soviet Math.

Dokl., Vol. 15, 1974, pp. 434-437.

[16] E.L. Lawler, Combinatorial Optimization and Matroids, Holt, Rinehart, and Winston, New York

(1976).

[17] R.-D. Lou, M. Sarrafzadeh, An optimal algorithm for the maximum two-chain problem, SIAM J. Disc.

Math. 5(2), 1992, pp. 285-304.

[18] V.M. Malhotra, M.P. Kumar, and S.N. Maheshwari, An O(|V|
3
) Algorithm For Finding Maximum

Flows in Networks, Computer Science Program, Indian Institute of Technology, Kanpur 208016,

India, 1978.

[19] M.A. Perles, A proof of Dilworth’s decomposition theorem for partially ordered sets, Israel J. of Math.

1(1963), 105-107.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

[20] H. Tverberg, On Dilworth’s decomposition theorem for partially ordered sets, J. Comb. Th. 3(1967),

305-306.

[21] D. Coppersmith, and S. Winograd. Matrix multiplication via arithmetic progression. Journal of Sym-

bolic Computation, vol. 9, pp. 251-280, 1990.

[22] S. Even, Graph Algorithms, Computer Science Press, Inc., Rockville, Maryland, 1979.

[23] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communication of the

ACM 21(7), July 1978, 95-114.

[24] H. Goeman, Time and Space Efficient Algorithms for Decomposing Certain Patially Ordered Sets,

PhD thesis, Department of Mathematics-Science, Rheinischen Friedrich-Wilhelms Universität Bonn,

Germany, Dec. 1999.

[25] R. Tarjan: Depth-first Search and Linear Graph Algorithms, SIAM J. Compt. Vol. 1. No. 2. June 1972,

pp. 146 -140.

[26] H.S. Warren, “A Modification of Warshall’s Algorithm for the Transitive Closure of Binary

Relations,” Commun. ACM 18, 4 (April 1975), 218 - 220.

APPENDIX

Find node-disjoint paths in Combined graphs

A.1 Algorithm

In the appendix, we discuss an algorithm for finding a maximal set of node-disjoint paths in a combined

graph G. Its time complexity is bounded by O (e n), where n = V(G) and e = E(G). It is in fact a

modified version of Dinic’s algorithm [6], adapted to combined graphs, in which each path from a virtual

node to a free node relative to a maximum matching Mi for some bipartite graph is an alternating path, and

for each edge (u, v)  Mi, we have d
+
(u) = d

-
(v) = 1. Therefore, for any three nodes v, v, and v on a path in

G, we have d
+
(v) = d

-
(v) = 1, or d

+
(v) = d

-
(v) = 1. We call this property the alternating property, which

enables us to do the task efficiently by using a dynamical arc-marking mechanism. An arc u  v with d
+
(u)

= d
-
(v) = 1 is called a bridge.

Our algorithm works in multiple phases. In each phase, the arcs in G will be marked or unmarked. We also

call a virtual node in G an origin and a free node a terminus. An origin is said to be saturated if one of its

outgoing arcs is marked; and a terminus is saturated if one of its incoming arcs is marked.

In the following discussion, we denote G by A.

At the very beginning of the first phase, all the arcs in A are unmarked.

In the kth phase (k  1), a subgraph A
(k)

 of A will be explored, which is defined as follows.

Let V0 be the set of all the unsaturated origins. Define Vj (j > 0) (note that not to confuse this with the graph

stratification) as follows:

 Ej-1 = {u  v  E(A) | u  Vj-1, v  V0  V1  ...  Vj-1, u  v is unmarked} 

 v  u  E(A) | u  Vj-1, v  V0  V1  ...  Vj-1, v  u is marked},

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

 Vj = {v  V(A) | for some u, u  v is unmarked and u  v  Ej-1} 

 v  V(A) | for some u, v  u is marked and v  u  Ej-1}.

Define j* = min{j | Vj  {unsaturated terminus}  }.

A
(k)

 is formed with V(A
(k)

) and E(A
(k)

) defined below.

If j* = 1, then

 V(A
(k)

) = V0  (Vj*  {unsaturated terminus}),

 E(A
(k)

) = {u  v | u  Vj*-1, and v  {unsaturated terminus}}.

If j* > 1, then

 V(A
(k)

) = V0  V1  ...  Vj*-1  (Vj*  {unsaturated terminus}},

 E(A
(k)

) = E0  E1  ...  Ej*-2  {u  v | u  Ej*-1, and v  {unsaturated terminus}}.

The sets Vj are called levels.

In A
(k)

, a node sequence v1, ..., vj, vj+1, ..., vl is called a complete sequence if the following conditions are

satisfied.

(1) v1 is an origin and vl is a terminus.

(2) For each two consecutive nodes vj, vj+1 (j = 1, ..., l - 1), we have an unmaked arc vj  vj+1 in A
(k)

, or a

marked arc vj+1  vj in A
(k)

.

Our algorithm will explore A
(k)

 to find a set of node-disjoint complete sequences (i.e., no two of them share

any nodes.) Then, we mark and unmark the arcs along each complete sequence as follows.

(i) If (vj, vj+1) corresponds to an arc in A
(k)

, mark that arc.

(ii) If (vj+1, vj) corresponds to an arc in A
(k)

, unmark that arc.

Obviously, if for an A
(k)

 there exists j such that Vj =  and Vi  {unsaturated terminus} =  for i < j, we

cannot find a complete sequence in it. In this case, we set A
(k)

 to  and then the kth phase is the last phase.

Example 4 Consider a graph A shown in Fig. 15(a), in which nodes a and b are two origins; and nodes g and

h are two terminus. Initially, all the arcs are not marked. Thus, V0 = {a, b}, V1 = {c, d}, V2 = {e, f}, V3 = {g,

h}; and j* = 3. A
(1)

 is the same as A. (Normally, A
(1)

 has fewer nodes than A.)

Assume that by exploring A
(1)

 (using the algorithm given below), we find a complete sequence: a, d, f, g.

Then, we will mark three arcs (a, d), (d, f), and (f, g), as shown by the thick arrows in Fig. 15(b). With

respect to these marked arcs, a second subgraph A
(2)

 (in the second phase) will be constructed as shown in

Fig. 15(c). In this phase, V0 = {b} (since node a is saturated), V1 = {d}, V2 = {a} (note that a  d is marked),

V3 = {c}, V4 = {e}, V5 = {g}, V6 = {f} (note that f  g is marked), V7 = {h}; and j* = 7. By exploring A
(2)

, we

will find another complete sequence: b, d, a, c, e, g, f, h, on which all the unmarked arcs will be marked

while all the marked arcs will be unmarked, as demonstrated in Fig. 15(d). Fig. 16(e) shows all the marked

arcs, which make up two node-disjoint paths: a  c  e  g and b  d  f  h.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Fig. 15. Illustration for graph searching

The following algorithm is devised to explore an A
(k)

, in which a stack H is used to store complete sequences.

In addition, for each v in A
(k)

, neighbor(v) represents a set of nodes: v1, .., vm such that for each j  {1, ..., m}

v  vj  E(A
(k)

) if v  vj is unmarked, or vj  v  E(A
(k)

) if vj  v is marked.

Algorithm subgraph-exploring ()

Begin

1. let v be the first element in V0;

2. push(v, H); mark v ‘accessed’;

3. while H is not empty do {

4. v := top(H); (*the top element of H is assigned to v.*)

5. while neighbor(v)  do {

6. let u be the first element in neighbor(v);

7. if u is accessed then remove u from neighbor(v)

8. else {push(u, H); mark u ‘accessed’; v := u;}

9. }

10. if v is neither in Vj* nor in V0 then pop(H)

11. Else {if v is in Vj* then output all the elements in H; (*all the elements in H make up a

complete sequence.*)

12. remove all elements in H;

13. let v be the next element in V0;

14. push(v, H); mark v;

15. }

End

The above algorithm works top-down, searching level by level. In each iteration of the outer while-loop, a

complete sequence is explored (by executing the inner while-loop, lines 5 - 9) and stored in the stack H. All

the found complete sequences are node-disjoint since any repeated access of a node is blocked by using the

mark ‘accessed’ (see lines 2, 7, and 8.)

Based on the above algorithm, the whole process to find a maximal set of node-disjoint paths is given below.

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Algorithm node-disjoint-paths(A)

Begin

1. k := 1;

2. construct A
(1)

;

3. while A
(k)

  do {

4. call subgraph-exploring(A
(k)

);

5. let P1, ... Pl be all the found complete sequences;

6. for j = 1 to l do

7. {let Pj = v1v2vm;

8. mark vi  vi+1 or unmark vi+1  vi (i = 1, ..., m - 1) according to (i) and (ii) above;

9. }

10. k := k + 1; construct A
(k)

;

11. }

end

The above algorithm runs in several phases. In each phase, a A
(k)

 is constructed (see line 2, and 10). Then,

subgraph-exploring () is invoked to find all node-disjoint complete sequences. Also, the arcs along each

complete sequence will be marked or unmarked (see line 8). When we meet a A
(k)

 = , the algorithm

terminates; and all the marked arcs in A make up a maximal set of node-disjoint paths.

A.2 Time complexity and correctness

In this subsection, we analyze the time complexity of node-disjoint-paths(A) and prove its correctness.

A.2.1 Time complexity

Lemma 7 Let
)(

1
kV , ...,

)(k
jk

V be the levels constructed when establishing A
(k)

. Then, we have jk < jk+1 if (k +

1)
th

 phase is not the last.

Proof. Let v be a node in
)(

1

k
jk

V


. If v 
)(k

jk

V , then, according to the definition of j*, we must go along a

longer path from a node in
)1(

1
kV to v than any path from a node in

)(
1

kV to v. If v 
)(k

jk

V , then, to reach v,

we must go along a node sequence v1, ...,
1kj

v = v such that there exist at least two consecutive nodes vl, vl+1

(1 < l < jk+1) with vl+1  vl being marked in the k
th

 phase due to the alternating property. Going from vl to vl+1

means a detour around. In terms of the definition of j*, jk+1 > jk. 

Lemma 8 Let P be a maximal set of node-disjoint paths in A. Let
)(

1
kV , ...,

)(

1

k
j

V be the levels when

establishing A
(1)

. Then, j1  |V(A)|/|P|.

Proof. Let be the length of the shortest path in P. Then, we have

 |P|  |V(A)|.

Therefore,   |V(A)|/|P|. However, j1 . Thus, the lemma follows. 

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

Foe each A
(k)

, we define B
(k)

 as follows.

(1) If u  v  E(A
(k)

) is an unmarked arc, then u  v  E(B
(k)

).

(2) If u  v  E(A
(k)

) is a marked arc, then v  u  E(B
(k)

).

We will prove that B
(k)

 also has the alternating property.

Lemma 9 In B
(k)

, for each node v, we have either d
+
(v)  1 or d

-
(v)  1.

Proof. We prove the lemma by induction on k.

Basis step. When k = 1. The lemma trivially holds.

Induction step. Assume that for k  h, the lemma holds. We consider B
(h+1)

. Let v be a node in B
(h+1)

. If v does

not appear in any complete sequences found in A
(h)

. The indegree and outdegree of v are the same as in B
(h)

.

If v appears in a complete sequence found in , we do the following analysis. Let v1, ..., vi-1, v, vi+1, ..., vl be a

complete sequence found in A
(h)

, on which v appears. Consider vi-1, v, vi+1, we have d
+
(v) = d

-
(vi+1) = 1, or

d
+
(vi-1) = d

-
(v) = 1 according to the induction hypothesis. In both cases, neither of vi-1  v and v  vi+1

appear in B
(h+1)

. But in the former case, u  v (for some u) and v  vi-1 will be added into B
(h+1)

, as shown

by the dashed arrows in Fig. 16(a). Note that in B
(h+1)

 d
+
(v) = d

-
(vi-1) = 1. In the latter case, vi+1  v and v 

u (for some u). In this case, d
+
(vi+1) = d

-
(vi) = 1. See Fig. 16(b) for illustration. Thus, a bridge in is replaced

with a different bridge in B
(h+1)

. 

Proposition 6 The time complexity of the algorithm node-disjoint-paths(A) is bounded by O(|AV|)(

|E(A)|).

Proof. Let P be a maximal set of node-disjoint paths in A. If |P|  |AV|)(, then the number of phases is

bounded by |AV|)(, and the result follows. If |P| > |AV|)(, we consider k such that in the k
th

 phase the

number of node-disjoint paths is |P| - |AV|)(. Then, by constructing A
(k+1)

, ..., A
(m)

 (assume that the m
th

phase is the last), and then exploring them, we will find the rest node-disjoint paths. Assume that
)1(

1
kV , ...,

)1(

1





k
jk

V be the levels constructed when establishing A
(k+1)

. In terms of Lemma 7 and 8, jk+1 |V(A)|/ |AV|)(

= |AV|)(.

Fig. 16. Illustration for Lemma 9

In terms of Lemma 7, k must be less than jk+1. Therefore, k  |AV|)(. Thus, the time spent for the first k

phase is bounded by O(|AV|)(|E(A)|). Also, the time for finding the rest node-disjoint paths is bounded

by O(|AV|)(|E(A)|). So the total cost is O(|AV|)(|E(A)|) 

Author name; BJMCS, x(x): xxx-xxx, 20YY; Article no.BJMCS.20YY.000

A.2.2 Correctness

Lemma 10 Let A
(0)

 = A, A
(1)

, ..., A
(k)

 = be the graphs generated in the different phases during the execution

of Algorithm node-disjoint-paths(A). Then, for each marked arc u  v in A
(i)

 (i = 1, ..., k - 1), the following

conditions are satisfied.

i) If u is not an origin, then there exists a node u such that u  u is marked in A
(i)

.

ii) If v is not a terminus, then there exists a node v such that v v is marked in A
(i)

.

Proof. We prove condition (1) by induction on phases i.

Basic step. When i = 1. The proof is trivial.

Induction step. Assume that the lemma holds for i  j. Consider phase j + 1. Let v1, ..., vl be a complete

sequence found in A
(j+1)

. Without loss of generosity, assume that (vg, vg+1) (1  g < l) corresponds to a

marked arc. If (vg-1, vg) corresponds to a marked arc, condition (i) is proved. Otherwise, there exists a

subsequence vh, vh+1, ..., vg such that each pair (vr+1, vr) corresponds to a marked arc in A
(j)

. According to the

induction hypothesis, if vg is not an origin, there must exist a node v such that (v, vg) corresponds to a marked

arc in A
(j)

. According to the algorithm, (vr+1, vr) will be unmarked, but (v, vg) remains marked.

In the same way, we can prove condition (ii). 

From the proof of Lemma 10, we can also see that any two paths made up of marked arcs (from an origin to

a terminus) are node-disjoint.

Proposition 7 The number of the node-disjoint paths in A found by node-disjoint-paths(A) is maximum.

Proof. Let A
(0)

 = A, A
(1)

, ..., A
(k)

 = be the graphs generated in the different phases during the execution of

the algorithm. Let V0,V1, ..., Vj be the levels when creating A
(
k). Then, Vj =  and Vi {unsaturated terminus}

=  for i < j. Consider the cut (R, R), where R = V0 V1  ... Vj-1 and R = V(A)\(V0 V1  ... Vj-1).

Each arc u  v with u  R and v  R must be marked. Otherwise, Vj  . In addition, each two of such

arcs are not on a same path. According to Lemma 10, each of such arcs corresponds to a node-disjoint path

and the number of such arcs is maximum. This completes the proof

© 2015 Siyuan and Zi-chen; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

